Cocliques in the Kneser graph on line-plane flags in PG(4;q)
نویسندگان
چکیده
We determine the independence number of the Kneser graph on line-plane flags in the projective space PG(4, q).
منابع مشابه
Maximal cocliques in the Kneser graph on point-plane flags in PG(4, q)
We determine the maximal cocliques of size ≥ 4q2 + 5q + 5 in the Kneser graph on point-plane flags in PG(4, q). The maximal size of a coclique in this graph is (q2 + q + 1)(q3 + q2 + q + 1).
متن کاملCocliques in the Kneser graph on the point-hyperplane flags of a projective space
We prove an Erdős-Ko-Rado-type theorem for the Kneser graph on the point-hyperplane flags in a finite projective space.
متن کاملOn the chromatic number of q-Kneser graphs
We show that the q-Kneser graph q K2k:k (the graph on the k-subspaces of a 2k-space over G F(q), where two k-spaces are adjacent when they intersect trivially), has chromatic number qk + qk−1 for k = 3 and for k < q log q − q . We obtain detailed results on maximal cocliques for k = 3.
متن کاملA three-class association scheme on the flags of a finite projective plane and a (PBIB) design defined by the incidence of the flags and the Baer subplanes in PG(2, q2)
First we define relations between the v = (s2+s+1}(s+l) flags (point-line incident pairs) of a finite projective plane of order s. Two flags a =(p,i) and b =(p' ,l'), where p and p' are two points and l and l' are two lines of the projective plane, are defined to be first associates if either p = p' or l = l'; second associates if p # p', l # l' but either p is incident also with l' or p' is in...
متن کاملOn Embeddings of the Flag Geometries of Projective Planes in Finite Projective Spaces
The flag geometry = (P,L, I) of a finite projective plane ⇧ of order s is the generalized hexagon of order (s, 1) obtained from ⇧ by putting P equal to the set of all flags of ⇧, by putting L equal to the set of all points and lines of ⇧ and where I is the natural incidence relation (inverse containment), i.e., is the dual of the double of ⇧ in the sense of [8]. Then we say that is fully (and w...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Combinatorica
دوره 37 شماره
صفحات -
تاریخ انتشار 2017