Cocliques in the Kneser graph on line-plane flags in PG(4;q)

نویسندگان

  • Aart Blokhuis
  • Andries E. Brouwer
چکیده

We determine the independence number of the Kneser graph on line-plane flags in the projective space PG(4, q).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Maximal cocliques in the Kneser graph on point-plane flags in PG(4, q)

We determine the maximal cocliques of size ≥ 4q2 + 5q + 5 in the Kneser graph on point-plane flags in PG(4, q). The maximal size of a coclique in this graph is (q2 + q + 1)(q3 + q2 + q + 1).

متن کامل

Cocliques in the Kneser graph on the point-hyperplane flags of a projective space

We prove an Erdős-Ko-Rado-type theorem for the Kneser graph on the point-hyperplane flags in a finite projective space.

متن کامل

On the chromatic number of q-Kneser graphs

We show that the q-Kneser graph q K2k:k (the graph on the k-subspaces of a 2k-space over G F(q), where two k-spaces are adjacent when they intersect trivially), has chromatic number qk + qk−1 for k = 3 and for k < q log q − q . We obtain detailed results on maximal cocliques for k = 3.

متن کامل

A three-class association scheme on the flags of a finite projective plane and a (PBIB) design defined by the incidence of the flags and the Baer subplanes in PG(2, q2)

First we define relations between the v = (s2+s+1}(s+l) flags (point-line incident pairs) of a finite projective plane of order s. Two flags a =(p,i) and b =(p' ,l'), where p and p' are two points and l and l' are two lines of the projective plane, are defined to be first associates if either p = p' or l = l'; second associates if p # p', l # l' but either p is incident also with l' or p' is in...

متن کامل

On Embeddings of the Flag Geometries of Projective Planes in Finite Projective Spaces

The flag geometry = (P,L, I) of a finite projective plane ⇧ of order s is the generalized hexagon of order (s, 1) obtained from ⇧ by putting P equal to the set of all flags of ⇧, by putting L equal to the set of all points and lines of ⇧ and where I is the natural incidence relation (inverse containment), i.e., is the dual of the double of ⇧ in the sense of [8]. Then we say that is fully (and w...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Combinatorica

دوره 37  شماره 

صفحات  -

تاریخ انتشار 2017